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Abstract
The photon–phonon coupling at C(001)-(2 × 1) surfaces and its manifestation in far-infrared
reflectance anisotropy spectra (FIR-RAS) are theoretically investigated. We solve the coupled
system of equations for the electromagnetic field and lattice vibrations, described within the
adiabatic bond charge model (ABCM), with the method of expansion into bulk phonon and
photon modes. The calculated FIR-RAS exhibit resonances associated with zone-center surface
phonons in good agreement with available HREELS experiments and predictions of vibrational
modes for diamond (001)-(2 × 1) surfaces from ABCM and ab initio calculations. Interestingly,
the reflectance anisotropy spectra for a C(001)-(2 × 1) surface turn out to be qualitatively
different from the spectra for a Si(001)-(2 × 1) surface, reported previously.

1. Introduction

During the past few decades, surface phonons have been
intensively investigated (see, for example [1–6], and references
cited therein). Their frequencies can be measured by means of
helium atom scattering (HAS) [3] and high-resolution electron
energy loss spectroscopy (HREELS) [1, 7, 8]. Optical spectro-
scopies (for example, infrared (IR) absorption [9, 10], IR el-
lipsometry [11], IR attenuated total reflection [12, 13], Raman
scattering [14, 15], and sum-frequency generation [16, 17]) are
also employed in investigating the motion of surface atoms and
have the advantage, in comparison with HAS and HREELS,
that they do not damage the sample and do not require an ultra-
high vacuum. Therefore, optical spectroscopies can be applied
to study surfaces of samples embedded in a gas or a liquid.

Another optical spectroscopy used for investigating
surface phonons is reflectance anisotropy spectroscopy
(RAS) [18]. RAS, which is also known as reflectance
difference spectroscopy (RDS), is a linear optical technique
based on the measurement of the difference between the
normal-incidence optical reflectance of light polarized along
two mutually perpendicular directions on the surface plane
as a function of the photon energy [19–21]. In a cubic
crystal, whose optical properties in the bulk are isotropic, the
anisotropy observed by means of RAS must be associated

with the reduced symmetry on the surface. RAS has been
successfully applied in the visible and ultraviolet spectral
ranges for investigating electronic, structural, and chemical
properties of surfaces (see, for example [22–29]).

The application of RAS in the far infrared for studying
the electromagnetic excitation of vibrational surface modes
was first discussed in [18]. There, it was demonstrated that
the reflectivity spectrum shows deviations from the spectrum
calculated by using the Fresnel formulae of the order of
10−4–10−3 because of the coupling of photons with surface
phonons. These small deviations can be observed in the
spectra of RAS. Due to the fact that the wavevector q of the
incident light is rather small in comparison with the inverse
of the lattice constant a (qa � 1), reflectance anisotropy
spectroscopy in the far infrared (FIR-RAS) can be applied
for investigating the excitation of surface vibrational modes
near the center of the bidimensional Brillouin zone (i.e. near
�̄ point). However, if the surface is reconstructed, FIR-RAS
might allow us to detect excited modes at other points of
the 2D Brillouin zone. Because of the sensitivity of RAS to
surface phonons, it can be used as a complementary technique
to infrared spectroscopies, having a prominent bulk signal that
might obstruct the detection of surface vibrational modes.

The first spectra of far-infrared reflectance anisotropy
were calculated for ideal nonreconstructed (110) surfaces of
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zinc-blende semiconductors [18, 30]. In the calculations,
a microscopic formalism based on the Born model [31],
including Coulomb interactions and retarded interactions, was
employed to describe the interactions between atoms in a
semi-infinite crystal. Despite its simplicity, such a formalism
showed that FIR-RAS spectra exhibit resonances associated
with surface phonons [18, 30]. The description of the
interaction between ions in zinc-blende crystals was improved
in [32] by using the model of valence force potentials proposed
by Keating [33]. The reflectivity spectra for nonreconstructed
(001) surfaces of GaAs and InP calculated in [32] present a
resonance structure that is sensitive to the orientation of the
polarization of the incident light with respect to the principal
axes of the crystal surface. The resonances appearing in the gap
limited by the acoustic and optical transverse branches were
associated with microscopic Lucas modes, which are excited
well when the lighter atoms are at the crystal surface.

In our previous work [34], the coupling of surface phonons
with light at Si(001) surfaces in the asymmetric (2 × 1) dimer
geometry, and its manifestation in far-infrared reflectance
anisotropy spectra were investigated. There, we have applied
the adiabatic bond charge model (ABCM) [35, 36] to describe
short-range mechanical interactions together with long-range
Coulomb forces and radiation fields. The use of the ABCM
is advantageous since it is possible to study the photon–
phonon coupling at surfaces of homopolar semiconductors.
It should be mentioned that the resonances in the reflectance
anisotropy spectra, predicted in [34], were clearly identified by
comparison with the surface phonon frequencies of Si(001)-
(2 × 1) at the �̄ point, which had been calculated in [37] with
the same ABCM.

In this paper, we shall investigate the photon–phonon
coupling at C(001)-(2 × 1) surfaces in order to determine
the infrared-active surface phonons that can be detected by
FIR-RAS. Such a reconstructed surface is characterized by a
symmetric dimer [38–42], and has been studied by employing
RAS in the visible and ultraviolet frequency ranges [43–46].
It is interesting that the optical spectra for the C(001)-(2 × 1)
surface exhibit a different anisotropy in comparison with the
Si(001)-(2 × 1). The reason for such a difference is due to the
dimer buckling that occurs at the Si(001)-(2 × 1) surface, but
not at the C(001)-(2 × 1) surface [39, 45, 46]. As is already
known (see, for example, [39, 4]), the rebuilding of the dimer
observed in Si(001), but not in C(001), is due to the fact that
p(s) valence orbitals are more extended than s(p) valence
orbitals for Si (C). In the case of Si(001), a Jahn–Teller-like
distortion occurs, leading to a redistribution of the charge and,
consequently, to the formation of asymmetric dimers [39].

In section 2, we present the theoretical formalism
developed to calculate far-infrared reflectance spectra for the
C(001)-(2 × 1) surface. Besides (section 3), we shall analyze
the resonance structure of RAS spectra and compare our results
with the predictions of [47–50], where the vibrations of atoms
in diamond surfaces have also been studied. Finally, we
will compare the FIR-RAS spectra for diamond and silicon
surfaces.

2. Theoretical formalism

Let us consider a semi-infinite diamond crystal, occupying the
space z > 0. An electromagnetic wave, propagating through
vacuum (z < 0), is incident on the (001)-(2 × 1) surface of the
crystal. The electric field of this wave has the form

Ei = E0(cos φ, sin φ, 0)eiqz z−iωt , (1)

where ω is the frequency and φ is the angle between the
vector Ei and the axis x , which is oriented along the [100]
direction. Our goal is to calculate the amplitude of the reflected
electromagnetic field. As a first step, we shall analyze the
dispersion relations of the vibrational and electromagnetic
modes in the bulk of the crystal.

2.1. Dispersion relations of bulk modes

The equations of motion for the atoms in a diamond crystal
can be written, within the adiabatic bond charge model
(ABCM) [35, 36], as

− mω2uis =
∑

j t

′
�is j t(u j t − uis) +

∑

kn

�iskn(skn − uis)

+ qET(Rion
is ) (2)

− m ′ω2skn =
∑

lm

′
�knlm (slm − skn) +

∑

j t

�kn j t (u j t − skn)

+ q ′ET(Rbc
kn). (3)

where uis is the displacement of the ion of type s (s = 1, 2)

inside the i th primitive cell of the crystal, with respect to
its equilibrium position Rion

is ; skn is the displacement of the
bond charge bc of type n (n = 1, 2, 3, 4) with respect to the
equilibrium position Rbc

kn . m and m ′ are the masses, q = 2Ze
and q ′ = −Ze (e is the magnitude of the electron charge)
are the charges of ions and bond charges, respectively, with
the parameter Z to be fitted. An important assumption within
the ABCM is that the masses of bond charges are equal to
zero (m ′ = 0). The prime in the summation in equation (2)
(equation (3)) indicates that j t �= i s [lm �= kn]. The tensors

�iskn = Kiskn + qq ′

εr
Piskn (4)

describe the total interaction between the particles i s and kn.
They contain a mechanical term, Kiskn , and a term, associated
with the Coulomb interaction, which is proportional to the
dipolar tensor

Piskn = ∇is∇is
1

|Rion
is − Rbc

kn |
. (5)

The quantity εr in equation (4) appears because of the screening
of bond charges by the remaining valence electrons.

Assuming that the atomic displacements from their
equilibrium positions are small, the terms Kis j t and Kiskn due
to the mechanical interaction are determined by expanding the
potential energy of the crystal

U mech = 1
2

∑

is, j s ′

′
φ(rion

is − rion
j s ′) +

∑

is, jn

φ(rion
is − rbc

jn)

+
∑

is

(
3

8( r0
2 )2

β

4∑

n,m>n

[�(ris
in · ris

im)]2

)
, (6)
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near the equilibrium configuration into a Taylor series. The
quantity β in (6) is the Keating bond-bending parameter,
and r0 is the equilibrium bond length. Within the harmonic
approximation, i.e. retaining up to quadratic terms in such an
expansion in particle displacements, the Cartesian components
of the mechanical tensors K μν

is j t , K μν

iskn , K μν

knlm and K μν

kn j t acquire
the form

K μν

is j t = −φμν(Rion
is − Rion

j t )

K μν

iskn = −φμν(Rion
is − Rbc

kn) + 3
4β

4∑

m=1

′κμ

iskm(κν
iskn + κν

iskm)

K μν

knlm = 3
4βκ

μ

knlmκν
knlm

K μν

kn j t = −φμν(Rion
kn − Rbc

j t ) + 3
4β

4∑

m=1

′κμ

kmjt (κ
ν
kn j t + κν

kmjt )

(7)
where

φμν(Rion
is − Rion

j t ) = ∂2φ(r)

∂rμ∂rν

∣∣∣∣∣
r=|Rion

is −Rion
j t |

(8)

are the components of the second derivatives of the interaction
potential between the particles i s and j t with respect to their
positions of equilibrium, and define the force constants for the
interaction between the particles. μ and ν range over the three
Cartesian components x , y, z, and the elements κ

μ

iskn are the
components of the unit vector κ̂ iskn defined along the bond
between the particle i s and its nearest neighbor kn (its positive
direction points to kn).

The last term in equations (2) and (3) describes the
interaction of ions and bond charges with the transverse
retarded (radiation) field which is produced by the vibration
of the charged particles. This field satisfies the wave equation

∇2ET(r) + εr
ω2

c2
ET(r) = −4π

ω2

c2
PT
[∑

j t

qu j tδ(r − Rion
j t )

+
∑

jn

q ′s jnδ(r − Rbc
jn)
]
, (9)

where
PT(k) = I − (kk/k2) (10)

is the transverse projection operator (I is the identity matrix),
δ(r) is the Dirac delta function and c is the light velocity in
vacuum.

The solutions for equations (2), (3) and (9) in the crystal
bulk have the form of Bloch waves:

uis = us(k)eik·Rion
is , (11)

skn = sn(k)eik·Rbc
kn , (12)

ET(r) =
∑

K

ET(k, K)ei(k+K)·r. (13)

In principle, the sum in (13) ranges over all the vectors K
of the reciprocal lattice. However, the main contribution to
the radiation field ET(r) is attributed to the first term of the
sum (K = 0), which represents the macroscopic electric
field. Indeed, after substituting equation (13) into equation (9),
we obtain explicit expressions for the coefficients ET(k, K),

according to which the terms with K �= 0 in the expansion (13)
are of the order of (ωa/c)2 � 1 (a is the lattice constant),
whereas the coefficient ET(k, 0) ≈ (ω/ck) is of the order of
one. Neglecting the microscopic fluctuations in the transverse
field ET(r) [18, 30, 32], we get

ET(r) ≈ ET(k, 0)eik·r, (14)

where

ET(k, 0) = 1

c2

(
4πω2

k2 − (ω2/c2)εr

)

× PT
[ 2∑

t=1

qut(k) +
4∑

n=1

q ′sn(k)
]
, (15)

and  is the volume of the primitive cell. Because of
the normal incidence of light (see equation (1)), the Bloch
wavevector k in equations (11), (12), and (14) is chosen to be
parallel to the [0 0 1] direction, i.e. k = (0, 0, kz).

We can eliminate the amplitudes sn(kz) and ET(k, 0)

from the system of equations (2), (3) and (9) and obtain a
system of equations exclusively for the amplitudes of the ion
displacements us(kz) (s = 1, 2):

−mω2u1 = U11u1 +U12u2 −mω2u2 = U21u2 +U22u2.

(16)
For the diamond crystal structure the matrices Ust (s, t = 1, 2)
have the form

U11 = U22 =
⎛

⎝
U xx

11 0 0
0 U yy

11 0
0 0 U zz

11

⎞

⎠ , (17)

U12 = U∗
21 =

⎛

⎝
U xx

12 U xy
12 0

U yx
12 U yy

12 0
0 0 U zz

12

⎞

⎠ , (18)

with U xx
11 = U yy

11 , U xx
12 = U yy

12 , U xy
12 = U yx

12 . We do not present
the explicit expressions for the elements of the matrices U11

and U12 here because of their cumbersome form.
We, further, eliminate the amplitude u2 from equa-

tions (16). Using (17) and (18), we find

Mu1 = 0, M = [(mω2 I + U11)
2 − U12U∗

12]. (19)

The matrix M is diagonal since the product U12U∗
12 turns out to

be diagonal. Hence, the calculation of the dispersion relations
for the bulk phonon modes is straightforwardly carried out.

The transverse phononic modes are degenerated (M xx =
M yy) and their dispersion relation is given by

m2ω4 + 2mω2U xx
11 + (U xx

11 )2 − (U xx
12 )2 − |U xy

12 |2 = 0. (20)

On the other hand the dispersion relation of longitudinal
phonon modes can be written as

m2ω4 + 2mω2U zz
11 + (U zz

11)
2 − (U zz

12)
2 = 0. (21)

In figure 1 we present the bulk phononic dispersion curves
(ω = ω(kz)) for C. The ABCM parameters used are shown
in table 1, being different from those proposed by Weber [36].
Other diamond parameters are: the ions mass m = 12.011u

3
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Figure 1. Dispersion relation of bulk phonons for C in the [001]
direction, calculated with the ABCM.

Table 1. ABCM parameters used in calculating the phonon
dispersion relations. All the force constants are given in units of
e2/Vc, Vc is the volume of the primitive cell in the bulk (b) and r0 is
the equilibrium bond length between the nearest neighboring ions.

φ′′
i−i (b) φ′′

i−bc(b) φ′
i−i (b)/r0 φ′

i−bc(b)/r0 β(b) Z 2(b)/εr

14.63 −4.27 46.13 −44.07 8.72 0.177

and the lattice constant a = 3.57 Å. The phononic bands
for C, obtained with the ABCM, agree with the experimental
phononic bands [51] (see also table 2). Notice that our
results reproduce the maximum of the optical phonon branch
which occurs along the [001] direction. It should also be
emphasized that, unlike Weber numerical calculations [35, 36],
we have incorporated the radiation field (14) in the equations
of motion (2) and (3). The contribution of this field to
the dispersion of phonons with kz ∼ 1/a is negligible as
(ωa/c)2 � 1.

The dependence of the components of the matrices Ust

(s, t = 1, 2) in equation (19) upon the radiated transverse
field is manifested at small values of the wavenumber as
kz ∼ ω/c � 1/a. We have derived the dispersion relation
of photon-like modes by eliminating the displacements sn(kz)

and us(kz) from the system of equations (2), (3) and (9) in the
limiting case kza → 0. The resulting dispersion relation can
be written as

k E
z = ω

c

√
εr + �εbc. (22)

As was expected, it corresponds to the dispersion relation of an
electromagnetic wave propagating in a medium with dielectric
constant ε = εr + �εbc, where �εbc is the contribution to
the dielectric function of the medium due to the bond charges.
Using the value ε = 5.7 for diamond, we found Z = 1.06,
εr = 6.35 and �εbc = −0.65.

Above, we have calculated the dispersion relations ω =
ω(kz) for the normal bulk modes. However, in the investigation
of the excitation of vibrational modes of surface atoms with
light, we need to solve the inverse problem, that is, given
a frequency ω it is necessary to find all the wavenumbers
kz , being either real or complex and satisfying the dispersion

Table 2. Experimental values [51] for the frequencies ν (=ω/2π) of
bulk phonons at X and � points (in THz units) for C and its
comparison with the frequency values predicted by the ABCM with
the parameters of table 1.

Experiment ABCM

νLTO(�) 39.9 39.9
νLAO(X1) 35.5 34.3
νTO(X4) 32.0 32.0
νTA(X3) 24.2 23.6

relations (20)–(22). The problem is not trivial since there are an
infinite number of solutions. A set of solutions corresponds to
the transverse and longitudinal phononic modes obtained from
equations (20) and (21). Another set of solutions is found from
the expression (22) for the photonic modes with small kz (k E

z ).
The real values of kz correspond to waves propagating through
the lattice, whereas the values of kz with an imaginary part
are associated with evanescent waves, which can be excited at
the surface of a semi-infinite crystal. To simplify the problem,
i.e. to obtain a finite number of solutions, kz(ω), we have
neglected the Coulomb interaction between (001) planes of
charged particles that are separated by a distance larger than,
or equal to, the constant lattice a. This approximation is good
enough since such an interaction decays exponentially [32]. As
a result, the approximation leads to sixth-degree polynomial
equations P6(x) = 0, with x = cos(kza/2), for both transverse
(T) and longitudinal (L) phonon modes. The proper phononic
(kT

z (ω), kL
z (ω)) and photonic k E

z (ω) solutions are chosen by
introducing a small damping γ0 (ω → ω + iγ0) and taking the
roots with a positive imaginary part (Im kz > 0), since such
modes decay towards the crystal bulk.

2.2. Expansion in bulk modes

As already mentioned, the illuminated C(001) surface is
assumed to have a 2 × 1 reconstruction pattern with symmetric
dimers (see figures 2 and 3). In accordance with the ABCM
for a semi-infinite crystal [47], bond charges, −Ze, are placed
midway between neighboring C ions of charge 2Ze. The
crystal surface is formed by the ions si1, si2, . . . , si6 and the
bond charges sc1, sc2, . . . , sc12. The dimer ions si1 and si2

are assumed to be at z = a/8. The positions of the surface
dangling bond charges (sc1, sc2, and sc3) were determined
by the maxima in the valence-electron density, which was
calculated in [47] by using the density-functional theory. The
charge −Ze is distributed between the dangling charges so that
each one is equal to −Ze/3 (q ′

1 = q ′
2 = q ′

3 = −Ze/3).
The equations of motion for the charged particles with

bulk-like equilibrium positions in the semi-infinite crystal
can be written as in equations (2) and (3), but with
summations ranging only over occupied sites. Such a system
is complemented by the equations of motion for the surface
charged particles (the ions si1, si2, . . . , si6 and the bond
charges sc1, sc2, . . . , sc12). Here, it should be mentioned that
the potential energy (6) is expressed in terms of the scalar
products of the bond radius between ions and charges, both
in the bulk and on the surface. In addition, since the scalar

4
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Figure 2. Schematic top view of the C(001)-(2 × 1) surface. The
surface ions and bond charges are labeled sil and scp

(l = 1, 2, . . . , 6; p = 1, 2, . . . , 12), respectively.

products do not change under rotations, the energy of the
truncated crystal is not altered under a rotation.

For normal-incidence geometry, the displacements of the
ions and bond charges on the reconstructed surface, and the
electric field (in z > 0) can be expressed as

usi
� =

∑

Q

u(Q, z�)e
iQ·Rsi

||,� , � = 1, . . . , 6, (23)

ssc
p =

∑

Q

s(Q, z p)e
iQ·Rsc

||,p , p = 1, . . . , 12, (24)

ET(r) =
∑

Q

ET(Q, z)eiQ·r|| . (25)

Here, the vector r|| is the projection of the position vector r
on the xy-plane (r|| = (x, y, 0)), and the summations range
over the reciprocal vectors of the reconstructed surface of the
crystal. As follows from the wave equation (9), the terms with
Q �= 0 in the expression (25) for the electric field, which
are associated with the phenomenon of light diffraction, can
be neglected, since their relative contribution turns out to be
quadratic in the parameter (ωa/c)2 � 1. Therefore, ET(r) ≈
ET(Q = 0, z) ≡ ET(z). Below, we also neglect the terms with
Q �= 0 in the expansion for the displacements of both surface
(usi

� (23), ssc
p (24)) and bulk particles (uit , s jn). The latter are

expanded into bulk normal modes [52, 53]:

ui t =
∑

l

∑

kl
z

ut (k
l
z, l)eikl

z zit (26)

s jn =
∑

l

∑

kl
z

sn(k
l
z, l)eikl

z z j n , (27)

where ut (kl
z, l) and sn(kl

z, l) are the polarization vectors of
the bulk (both phonon and photon) modes, corresponding to
the solutions kl

z for the dispersion relations (equations (20)–
(22)). The super-index l denotes the branches: l = T1, T2 label
the two transverse phonon polarizations, l = L indicates the
longitudinal phonon polarization and l = E1, E2 correspond

Figure 3. Schematic side view of the C(001)-(2 × 1) surface.

to the two transverse polarizations of the photon modes. The
vectors ut (kl

z, l) and sn(kl
z, l) are found by imposing that the

displacements uit and s jn in (26) and (27) satisfy the equations
of motion for the charges of the semi-infinite crystal. The
system of equations becomes finite thanks to the truncation of
the Coulomb interaction carried out above. Thus, the resulting
finite system is given by the equations of motion for the 18
surface particles shown in figures 2 and 3 (i.e. si1, si2, . . . , si6

and sc1, sc2, . . . , sc12), and 6 particles of the first (closer to the
crystal surface) bulk-like primitive cell, whose displacements
are coupled to the displacements of the surface particles.
The system is closed with the expansion for the macroscopic
electric field ET(z) inside the semi-infinite crystal into bulk
modes:

ET(z) =
∑

l

∑

kl
z

ET(kl
z, l)eikl

z z, (28)

where ET(kl
z, l) is expressed in terms of the amplitudes

ut (kl
z, l) and sn(kl

z, l) as (equation (15)):

ET(kl
z, l) = 1

c2

(
4πω2

(kl
z)

2 − (ω2/c2)εr

)

× PT(kl
z)
[ 2∑

t=1

qut(k
l
z, l) +

4∑

n

q ′sn(k
l
z, l)

]
. (29)

We should emphasize that the expansion (28) for the
macroscopic electric field ET(z) contains only transverse bulk
modes (l = T1, T2, E1, E2).

2.3. Calculation of reflectivity

As was mentioned above, the components ET(Q, z) (with Q �=
0) of the electric field ET (25) are negligible (ET(r) ≈ ET(Q =
0, z)). Therefore, the light must be reflected specularly from
the crystal surface and the electric field of the reflected wave
can be written in the form

Er = (E r
x, E r

y, 0)e−iqz−iωt . (30)

In order to calculate the amplitudes E r
x and E r

y of the
reflected electromagnetic wave (30), we should apply Maxwell

5
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Figure 4. Deviation of the reflectivity with respect to the Fresnel
formula for the C(001)-(2 × 1) surface and incident light with a
polarization vector along the [1 1̄ 0] direction.

boundary conditions, i.e. the continuity of the tangential
components of the electric and magnetic fields at the vacuum–
diamond interface (z = 0). Afterwards, a relation for the
components of transverse field ET(z), and its normal derivative
dET(z)/dz at z = 0, with the amplitudes of the incident
(equation (1)) and reflected (equation (30)) fields is derived:

ET
x (0) = E0 cos φ + E r

x, ET
y (0) = E0 sin φ + E r

y, (31)

dET
x (0)

dz
= iqz(E0 cos φ − E r

x),

dET
y (0)

dz
= iqz(E0 sin φ − E r

y).

(32)

The values of ET
x (0) and ET

y (0) in (31) are coupled to
bulk displacements according to equations (28) and (29). The
resulting system of equations for the amplitudes has to be
closed with an accurate relation between ET(0) and dET(0)/dz.
In order to obtain it, we have solved the wave equation (9) for
the irradiated transverse field inside the semi-infinite medium
(z > 0) by applying the standard Fourier transform method.
After using the expansions (26) and (27) for the ion and charge
displacements into bulk modes, we get

ET(0) = − i

kr

dET

dz

∣∣∣∣
z=0

+ 4π iω2

kra2c2
PT

(
6∑

�=1

qusi
� (kz) exp(ikrz�)

+
12∑

p=1

q ′
pssc

p (kz) exp(ikrz p)

+
2∑

t=1

∑

l

∑

kl
z

qut(k
l
z)

[
exp(i(kl

z + kr)z
(1)
t )

1 − exp(i(kl
z + kr)a/2)

]

+
4∑

n=1

∑

l

∑

kl
z

q ′sn(k
l
z)

[
exp(i(kl

z + kr)z(1)
n )

1 − exp(i(kl
z + kr)a/2)

])
, (33)

Table 3. Values for the force constants on the surface C(001)-(2 × 1)
(s) in units of e2/Vc, used in calculating the reflectivity.

φ′′
i−i (s) φ′′

i−bc(s) φ′
i−i (s)/r0 φ′

i−bc(s)/r0 β(s) Z 2(s)/εr

14.63 −4.27 46.13 −2.5 8.72 0.177

where kr = √
εrω/c. The quantities z(1)

t (t = 1, 2) and z(1)
n

(n = 1, . . . , 4) in equation (33) indicate the positions of ions
and bound charges of the first bulk-like primitive cell below the
layer of surfaces ions (si) and bond charges (sc), respectively
(see figures 2 and 3).

After solving the resulting system of algebraic equations
for the components of the displacements vectors ut (kl

z), sn(kl
z),

usi
� , ssc

p , the electric field ET and its derivative dET/dz at z =
0, and the components of the reflected electromagnetic wave
(E r

x , E r
y), the normal-incidence reflectivity is straightforwardly

calculated with the formula:

R =
∣∣∣∣

E r
x

E0

∣∣∣∣
2

+
∣∣∣∣

E r
y

E0

∣∣∣∣
2

. (34)

Below, we shall present results for the reflectance difference
spectrum given by the expression

�R

R
= R − RF

R
, (35)

which determines the deviation of the reflectivity R with
respect to the reflectivity RF, calculated by using the Fresnel
formula for a medium with dielectric constant ε = εr + �εbc:

RF =
∣∣∣∣∣
1 − √

ε

1 + √
ε

∣∣∣∣∣. (36)

3. Reflectance anisotropy spectra

The deviations of the normal-incidence reflectivity from the
Fresnel formula �R/R for the C(001)-(2 × 1) surface are
presented in figures 4 and 5 for two different polarizations
of the incident electric field: parallel (p) (figure 4) and
perpendicular (s) (figure 5) to the direction of dimer rows
(i.e. with respect to the [11̄0] direction). We also present
the FIR reflectance anisotropy spectrum (figure 6), obtained
by subtracting the spectrum for p polarization (figure 4) from
the spectrum for s polarization (figure 5). Precisely, such a
spectrum (figure 6) could be experimentally measured. In
calculating the spectra, the data used for the relaxed geometry
of the C(001)-(2 × 1) surface were taken from [47], where
the computations are based on the local density approximation
(LDA) of the density-functional theory. So, the surface has
symmetric dimers (figures 2 and 3) with a bond length of
1.38 Å, which agrees with previously reported results (see, for
example, [38–42, 49, 50]). As was mentioned in section 4, the
orbital lobes are represented by three bond charges (q ′

1 = q ′
2 =

q ′
3 = −Ze/3) at points corresponding to the maxima of the

electronic charge density. The values of the force constants on
the surface, used here, are shown in table 3.

The reflectance difference spectra (figures 4 and 5) exhibit
resonances at h̄ω = 83, 134.9, 162.9, and 175.2 meV, with
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Figure 5. Deviation of the reflectivity with respect to the Fresnel
formula for the C(001)-(2 × 1) surface and incident light with a
polarization vector along the [1 1 0] direction.

Figure 6. Reflectance anisotropy spectrum obtained by subtracting
the spectrum in figure 4 from that in figure 5.

relative intensities of the order of 10−5–10−2, which depend
on the polarization of the incident light. All these resonances
should be associated with surface phonons at the �̄ point, since
in the calculations we have expanded the displacements of the
ions and charges in the semi-infinite crystal into bulk normal
modes with zero parallel wavevector, only (see section 2.2).
Note that the deviations from the Fresnel formula turn out
to be more prominent for light with a polarization parallel
to the dimer rows (compare figures 4 and 5). The RAS
resonances (figure 6) appear in the frequency regions of the
700 cm−1 (87 meV), 1015 cm−1 (126 meV) and the 1225 cm−1

Table 4. Frequencies (in meV) of electromagnetically excited
surface phonons at �̄ for the C(001)-(2 × 1) surface, corresponding
to the resonances in the reflectance anisotropy spectra (figure 6). The
symmetries (even or odd) of phonon modes with respect to the mirror
plane perpendicular to the dimer rows are also indicated.

RAS ABCMa Ab initiob HREELSc

83 90/even 89/even (∼87.5/even) 87(92)
134.9 133/even 140/even (∼126.3/odd) 126(135)
162.9 169/even ∼164/odd (∼162.8/odd) ∼152(164)
175.2 176/even 174/even (184.6/even) ∼152(172)

a Reference [47]. b References [47] ([49]).
c References [54, 55] ([48]).

(152 meV) bands, observed by means of HREELS in [54, 55]
(correspondingly, figures 1 and 7 therein). The HREELS peak
at the highest frequency (152 meV) is wide and is composed of
various phonon resonances. Also, RAS features are very close
to the well-defined features at h̄ω =92, 135, 164, and 172 meV
in the EELS spectrum reported in [48] (figure 2 therein).
The frequencies and symmetries of the corresponding surface
phonons at the �̄ point, predicted in [47–50] by employing
ab initio techniques and an adiabatic bond charge model, are
indicated in table 4.

The two highest RAS resonances at 162.9 and 175.2 meV
(figure 6) for the C(001)-(2 × 1) surface correspond to the
two localized phonon modes, at 169 and 176 meV, which are
above the bulk continuum in the phonon dispersion calculated
with the ABCM in [47]. These localized modes give rise
to two high-frequency peaks in the density of states (DOS)
on the C(001)-(2 × 1) surface (peaks labeled S4 in figure 9
of [47]). The RAS feature at the highest frequency, 175.2 meV,
corresponds to a dimer stretch mode [47, 49] of even symmetry,
which results from the opposing vibrations of the dimer ions
(si1 and si2) on the mirror plane perpendicular to the dimer
row direction. The resonance at 162.9 meV, appearing slightly
below the frequency of the bulk optical phonon (164 meV), is
associated with the even mode at 169 meV predicted in [47].
The small difference of 6 meV in the energy localization for
such a phonon mode is due to the use of different ABCM
fitting parameters. In our calculations, we have chosen the
ABCM parameters among various solution sets so that both
bulk phonon dispersion curves (figure 1) are well reproduced
and the RAS features agree with the resonances observed in the
EELS experiment [48] (see table 4). Finally, the RAS features
at 83 and 134.9 meV compare well with the zone-center surface
phonon frequencies from ab initio and ABCM calculations,
indicated in our table 4 (see also table III in [47]). It should
be mentioned that the even surface phonon modes (vibrations
on the mirror plane) can be excited by light with a polarization
vector parallel to the dimer rows (see figure 4) thanks to the
coupling of the components of the particle displacements at
the reconstructed surface.

We should note that features, associated with localized
modes just above the bulk continuum in the phonon dispersion,
were also predicted for the Si(001)-(2 × 1) surface in the
asymmetric dimer geometry, at 66.84 (67.1) meV and 68.06
(69.25) meV in [34] ([37]). In addition, the low-frequency
resonances at 47.92 and 57.26 meV in the RAS spectrum
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for the Si(001)-(2 × 1) surface [34] are relatively strong,
unlike low-frequencies resonances at 83 and 134.9 meV for
the C surface (compare figure 2 of [34] with our figure 6).
The resonance structure in reflectance anisotropy spectra for
the Si surface also turns out to be similar to that observed
in RAS spectra for the Ge(001)-(2 × 1) surface with tilted
dimers [56]. Therefore, the difference in the resonance
structure of reflectance anisotropy spectra for the C(001)-
(2 × 1) surface, compared with the corresponding Ge and Si
surfaces, can be attributed to the symmetric dimer geometry
of the diamond surface. Significantly, the difference of RAS
spectra for C(001) and Si(001) surfaces is observed not only
in the far infrared, but also in the visible and ultraviolet
frequency ranges [45, 46] as it was commented upon in
section 1. Nevertheless, experiments with FIR-RAS are needed
to elucidate the differences of the phonon–photon coupling at
(001) surfaces of diamond-type crystals.

4. Conclusion

We have developed a theoretical formalism for calculating far-
infrared reflectance anisotropy spectra (FIR-RAS) within the
empirical adiabatic bond charge model. The formalism has
been applied to study the photon–phonon coupling at C(001)-
(2 × 1) surfaces with a symmetric dimer geometry. The
spectra of FIR-RAS calculated here show a resonance structure
due to the electromagnetic excitation of zone-center phonons
at frequencies that correspond to frequency bands previously
measured with HREELS [48, 54, 55], and predicted with the
ABCM [47, 48] and first principle calculations [48–50]. It
was found that the highest-frequency surface phonon modes,
lying just above the bulk continuum in the phonon dispersion,
yield huge resonances, of the order of 10−2, in the reflectance
anisotropy spectra. In comparison with silicon and germanium
(001)-(2 × 1) surfaces, characterized by an asymmetric dimer
reconstruction, the spectrum of FIR-RAS for the C(001)-(2 ×
1) surface, with a symmetric dimer, is noticeably different
because of the weak manifestation of low-frequency zone-
center surface phonons in the diamond case.
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[32] Pérez-Rodrı́guez F, Récamier J and Mochán W L 1998 Surf.

Sci. 414 93
[33] Keating P N 1966 Phys. Rev. 145 637
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